
Converting a Legacy System Database into
Relational Format to Enhance Query Efficiency

Jonathan C. Prather, B.S.', David F. Lobach, M.D.,Ph.D.,M.S.', Joseph W. Hales, Ph.D.',
Marvin L. Hage, M.D.2, Seth J. Fehrs, B.S.E.', and William E. Hammond, Ph.D.'

Duke University Medical Center, Durham, North Carolina
'Division ofMedical Informatics

2Department of Obstetrics and Gynecology

The analysis of clinical data collected over time can
provide important insight into the health care process.
Unfortunately, much of the electronic clinical data that
exists today is stored in legacy systems, making it
difficult to access and share the information. An
approach is needed to improve the accessibility of
electronic data stored in legacy system databases. In
this study, a legacy database is converted into a
relationalformat in the personal computer environment.
The impact ofsuch a conversion on queryperformance is
evaluated, and issues that need to be considered when
converting a legacy system database are identified.

INTRODUCTION

With advances in infonnation technology, access to
clinical data is becoming increasingly important both for
evaluating health care delivery and for setting health care
policy [1-6]. Clinical data that has been accumulated
over time is particularly valuable for monitoring trends in
health care delivery, for assessing the effectiveness of
medical therapies, and for evaluating outcomes.
Unfortunately, much of this long term clinical data has
been collected in systems with proprietary database
structures that make data accessibility and portability
difficult. To make this valuable data easily and
economically accessible, alternative methods are needed
to query the data. One approach to improve accessibility
is to convert the proprietary database into a relational
format on commercially available database software
which supports SQL or other ad-hoc querying
mechanism.

The potential advantages of using commercial
database software on a personal computer (PC) include
improved query performance, access to standard ad-hoc
query tools, enhanced documentation, and the ability to
export query results to a statistical software package [7].
In the past, converting an entire legacy system to the PC
environment was constrained by technological limitations
both in commercial database software and in PC
hardware. Conversion to the PC environment is now
potentially feasible due to recent advances in search

engines for relational database software and
improvements in the processing power and storage
capacity of PCs.

Little work has been published that addresses the
conversion of patient databases from legacy systems to
increase query performance. Huff et al. [7] converted a
portion of a proprietary clinical database to a relational
format. However, no attempt was made to convert the
entire legacy database or to normalize the relational
representation. This conversion also depended on main-
frame technology.

The purpose of this project is to demonstrate that a
large legacy database could be successfully converted to a
relational format in the PC environment. In this paper
we describe the conversion of the database from TMR®
(The Medical Record) into three commercial relational
database packages. We also report the results of our
evaluation of query speed, single record retrieval time,
and disk storage requirements using the relational
database packages and the VAX-based legacy system.
Finally, we discuss several issues that need to be
considered in converting legacy databases to relational
databases in the PC environment.

METHODS

Computer Based Patient Record System
TMR is a comprehensive longitudinal computer-

based patient record system (CPRS) developed at Duke
University over the last 25 years. While the functionality
of TMR continues to evolve, the underlying data
structure has remained fundamentally the same [8]. The
existing database structure provides efficient and secure
storage; however, it makes performing complex queries
slow and labor-intensive. In short, the existing TMR
query system does not meet current research needs.
Consequently, a customized program needs to be written
to extract the data for each query.

The TMR database selected for conversion in this
project was the perinatal database used by the
Department of Obstetrics and Gynecology at Duke
University Medical Center [9]. This database serves as
the repository for a regional perinatal computerized

0195-4210/95/$5.00 © 1995 AMIA, Inc. 372

Table 1. Example nodes m a patient record with two TMR problem data blocks.
Description of Node Node Number Actual Stored Data
patient identifier 1 555-55-5555
problem code 170 60
modifier 171 marginal- f/u 24-26 wks
onset date 177 93130
date resolved 178 93181
problem code 180 707
modifier 181 transverse abd incision
onset date 187 93181
date resolved 188 93181
recurring dates 189 91130-91130

patient record that is used in both inpatient and
outpatient settings. The current Duke perinatal database
contains comprehensive data on 40,854 patients seen in
the department since 1988. The data collected includes
demographics, registration, study results, problems,
therapies, subjective and physical findings (SAPs), and
encounter summaes.
TMR has a proprietary data structure. This structure

employs a modular approach to store all of the patient's
information in a single record. An individual TMR
patient record is composed of variable length delimited
character strings called nodes. While this data structure
is flexible and easy to expand, it is not a standardized
database management system [10]. Retrieval of TMR
data is only accomplished by using application program
code written in GEMISCH, the native programning
language for TMR [8].

Conversion to Relation Format
The primary TMR record was mapped and exported

in ASCII into relational tables in third normal form.
These tables formed the relational databases on the PC
and contained 84 entities and 460 attributes. Lengths for
the fields in the relational tables were not assigned before
the data was imported. The longest data element of each
field in the database was automatically used by the
relational software for the field size in the relational
tables.

An example of how the data was mapped from the
TMR database into relation tables is shown in Tables 1
and 2. TMR, as a problem-oriented CPRS, focuses on
tracking patient problems. Each problem is assigned 10

nodes in the patient record. These nodes store the
problem code and the associated descriptors which
include a free-text modifier, onset date, resolved date,
recurring dates, certainty factor, a DUSOI (Duke
University Severity of Illness) score, causes, and
manifestations. Table 1 shows patient data contained
from two problem entries in a TMR patient record.
These two entries mapped into three relational records
(Table 2). The lack of one-to-one mapping occurred
because the second problem occurred on two separate
dates.

Three off-the-shelf PC relational database packages
were used in the project: Borland Paradox®D for DOS v
4.0, Borland Paradox® for Windows v 1.0, and Microsoft
Access®D v 2.0. These packages were chosen because
each package had features to import and export ASCII
tables with the delimiter of choice. Stand-alone versions
of these database packages were installed on a PC with a
60 MHz Pentium CPU, 1700 megabytes of hard disk, 16
megabytes of RAM, and using the Windows NTTm 3.5
operating system and file system. To avoid confusion
with the many database files involved, a relative
addressing scheme to group related files in separate
directories was utilized for each relational database.

Evaluation Methods
To evaluate query speeds, three queries of increasing

complexity were constructed to run on the four systems.
A "first order' query was defined as a query which
involved data contained in only one table; a "second
order' query involved data contained in two tables that

Table 2. Example relational records created by the nodes in Table 1.
Patient Onset Problem Problem Certainty DUSOI Date
Identifier* Date* Code* Modifier* Factor Score Resolved
555-55-5555 05/10/91 60 marginal- Vu 24-26 wks N/A N/A 02/17/91
555-55-5555 02/17/91 707 transverse abd incision N/A N/A 02/17/91
555-55-5555 02/03/93 707 transverse abd incision N/A N/A 02/03/93

* indicates keyedfields which combine to uniquely identify the record

373

were linked together; and the "third order" query
involved data contained in three linked tables. The
content of the response to each of the three queries across
all four databases was found to be identical.

A second evaluation involved the time to retrieve a
single patient's record by an indexed field. Retrieval of a
single record is sometimes required for research queries.
For this evaluation, records for three different patients
were retrieved by the patient's name from the same
locations within each database. The patient records
selected for retrieval were chosen because they were the
first, middle and last records of each database. In the
relational packages, secondary indexes were created on
the field of interest. Measurement of the retrieval times
included the time required to link several patient tables
together in a form.

Storage efficiency was evaluated by comparing the
physical size of the relational tables (including indexes)
with the size of the current structure of the same data in
TMR. To compare table sizes for all three relational
packages simultaneously within the size constraints of
the hard drive, three sample sections of TMR data of
different sizes were imported into the relational
packages. The smallest section contained information
about referral physicians. The mid-sized section
contained patient problems (structure shown in table 2).
The largest section for the comparison contained
demographic information.

Comparing the size of relational tables with only the
raw TMR data and delimiters would be misleading
because the overhead of the TMR data structure would
not be included. Therefore, an estimation of the size of
the TMR data prior to conversion was made using the
above equation.

101000 r

1,000 1

Tim
(seconds) 100 -

10

1I

16P[(- N) + E (5M,)]5
7MRDataSize = R +

8
In the formula, R is the total bytes of data (including

delimiters) of the nodes containing the raw data, P is the
total number of patient records, N is the number of
applicable nodes to the table, and M is the number of
non-empty nodes for the ith patient record.

RESULTS

Query Times
The queries of the relational databases were

completed in a fraction of the time required to query the
same information using GEMISCH programs in TMR.
All three queries using the legacy programs took over an
hour to complete. In contrast, the three queries on the
relational systems all took less than 4 minutes (Figure 1).

Among the relational packages, Paradox®9 for DOS
had the best average query time of 76 seconds per query.
Access®D averaged 106 seconds per query, while
Paradox® for Windows averaged 110 seconds per query.
The average query time on the TMR system was 5691
seconds, or approximately 1.5 hours. Paradox®! for DOS
performed best on the first and second order queries (61
and 54 seconds respectively), while Access®3 perfonned
best on the third order query (63 seconds). Paradox® for
Windows recorded the slowest times on the second and
third order queries (122 and 146 seconds respectively),
while Access®3 was slowest on the first order query (196
seconds).

sO
1st Order Query 2nd Order Query 3rd Order Query

Figure 1. Logarithmic graph of query times by degree of complexity.

374

1.0 B *TMR
0.9 i Paradox for D08
0.3 U Paradox fbrWidws
0.7 . Microsof Access
0.6

Times
(seconds) BA5

0.3

0.2
0.1
0.0

.First Middle Last
Record Record Record

Figure 2. Patient record retrieval times by an indexed
field (patient name).

Single Record Retrieval
The times for retrieving a single record by an indexed

field varied among the relational packages (Figure 2).
TMR access times were less than a tenth of a second for
all three patients regardless of where their records were
stored in the database. This finding was expected
because the TMR application program code has been
optimized to retrieve single records. Among the
relational packages, Paradox®3 for DOS had the fastest
search times and averaged 0.2 seconds per retrieval.
Microsoft Access®& was second fastest with an average of
0.4 seconds per retrieval, with the retrievals becoming
progressively slower the deeper the patient record was
located in the database. Paradox®D for Windows was the
slowest at finding a single patient record and averaged
0.5 seconds per retrieval.

Storage Efficiency
The physical size of the data files increased

substantially when the patient data was converted from
TMR into relational format. All three relational
databass more than doubled the size of the original
TMR data section (Table 3). For the smallest section, the
Paradox® databases were the most efficient for storing
the patient data. For larger sections, the Access®3
databas was the most efficient. The smallest section of
TMR data grew from 54 kilobytes in TMR to an average
size of 162 kilobytes in relational format (301% the size
of the original data). The mid-sized data section went
from 8.8 megabytes to an average 29.6 megabytes (337%
the size of the original data). The largest section showed
the largest proportional increase following conversion:
18.2 megabytes increased to an average of 66.4
megabytes (365% the size of the original data).

The largest file imported in the entire project was the
subjective and physical findings section of the TMR
database; this section contained approximately three
million entries. The file containing the SAP data was
more than 74 megabytes. All three relational database
packages had difficulty converting this large file. In
Paradox® for Windows, the table became corrupted after
2 queries. Paradox® for DOS and Microsoft Access® did
not complete the import process. In order to successfully
convert the TMR SAP data, we divided SAP data into
four smaller tables. Although this step caused the
database to deviate from normal form, it provided the
end-user with the tables required to run queries on all
SAPs in the database. Though a partitioning of the SAP
data was required for these three databae packages,
partitioning might not be necessary with other relational
database packages.

DISCUSSION

The primary benefit of the conversion of the legacy
database to relational format was the significant
reduction in query times. While the relational databases
improved query speed, they did so at the expense of
decreased storage efficiency and increased retrieval times
for a single patient record by an indexed field. The TMR
data structure provides extremely efficient storage
because space is not allocated for data that are not
present in the record. In contrast, the relational database
structures required that substantial space be allocated
whether or not data was stored in the field. In spite of
the increased size, the relational database tables were still
manageable in a PC environment. The amount of time
required to retrieve a patient record by an indexed field,
however, could be problematic for accessing patient data
in a clinical setting. Fortunately, single record retrieval
is not frequently required in research queries, thus this
drawback may not impact most of the database queries.

Entering queries on the relational systems was more
expedient than programming queries directly in TMR.
The relational database packages evaluated incorporated
query-by-example with graphical user interfaces. This
querying style was more interactive and more flexible
than the query system in TMR. If a query-by-example
did not return the desired results, the query could be
modified and re-run in a matter of seconds. In TMR, a
modification in a program would need to be made to alter
the query.

The relational approach has several potential
problems. First, the commercial relational database
package may not accommodate vague temporal
representations commonly used in a CPRS. If the exact
date or time of an occurrence is not known, TMR allows

375

Table 3. Table sizes in bytes including overhead.
Database tables TMR® Data Paradox® for DOS Paradox® for Microsoft Access®

Structure v 4.0 Windows v 1.0 v 2.0
Referring MDs 54,032 bytes 143,360 bytes 147,456 bytes 196,672 bytes
ReferringMDs + 8,797,693 bytes 42,121,216 bytes 33,751,040 bytes 13,074,496 bytes
Problems
Referring MDs + 18,220,912 bytes 88,733,696 bytes 73,056,256 bytes 37,584,960 bytes
Problems +
Demographics

the user to input only the known information. For
example, if a patient knows he had an immunization in
June 1995, but does not remember the specific day of the
month, the date can be stored as 61??195. The relational
database packages we tested only accepted complete dates
and times in their designated field types. Consequently,
time and date data exported from TMR had to be stored
in alphanumeric fields and built-in date and time
functions could not be used. Second, the relational
format makes it difficult to store fields of variable length
in the CPRS. The longest occurrence of the data can be
measured and used for the field length; however, this
may cause an unnecessary overhead in the database. For
example, in TMR, a 200 character narrative explanation
might be entered in the modifier field instead of a coded
data phrase. In the relational database, the modifier field
would be set at 200 characters. This overhead for free
text data elements could be minimized by storing
narrative modifiers in a separate table. The third
potential problem relates to maintaining concurrence
following the conversion of the TMR database. If data
were changed in TMR, it would need to be changed in
the relational version. Because the legacy database is the
initial repository for the data, it must be considered the
"gold standard," the official and most reliable version of
the data. To avoid converting the entire CPRS database
to maintain concurrence after a modification of the data,
a daily log file of modified records could be used to
identify the records requiring re-conversion in order to
capture revised or new data. This approach presents a
problem when database activities are not recorded in the
daily log, such as when a programmer fixes a corrupt file
or when system modifications are made outside of normal
application code. A mechanism would need to be put in
place to record these changes in the legacy system as
well. Fourth, relational conversion introduces security
issues. Multiple copies of the legacy system data present
a potential for improper access and use of confidential
patient data. In a CPRS, security precautions are already
in place because the data exist in one central repository
with password protection. In TMR specifically, patient
data are naturally encrypted by the data structure,
providing an extra layer of security. Confidentiality will

need to be addressed by the administrators of the
relational databases.

The results of this study show that converting a
legacy database into relational format in the personal
computer environment is possible. Such a conversion
enhances query efficiency and improves accessibility to
data by eliminating the barriers imposed by the legacy
system. The storage of long-term clinical data in
relational format permits health care professionals to use
commercially available software to perform retrospective
studies. Studying this clinical data will potentially lead
to improvements in the quality and cost effectiveness of
health care delivery.

This work supported in part byNLM Training Grant #LM07071-3.
REFERENCES

1. Fisher LD, Gillespie MJ, Jones M, McBride R. Design of
Clinical Database Management Systems and Associated
Software to Facilitate Medical Statistical Research. Cril Rev in
Med Informatics, 1988;1:323-31.
2. Fries JF. The Chronic Disease Data Bank Model: a
Conceptual Framework for the Computer-based Medical
Record. Comp and Biomel Res, 1992;25:586-601.
3. Hlatky MA, Lee KL, Harrell FE Jr, Califf RM, Pryor DB,
Mark DB, Rosati RA. Tying Clinical Research to Patient Care
by Use ofan Observational Database. Stat Med, 1984;3:375-87.
4. Pryor DB, Callif RM, Harrel FE, Hlatky MA, Lee KL, Mark
DB, Rosati RA. Clinical Data Bases: Accomplishments and
Unrealized Potential. Medical Care, 1985,23:62347.
5. Safran C. Using Routinely Collected Data for Clinical
Research. StatMed, 1991;10:559-64.
6. Tiemey WM, McDonald CJ. Practice Databases and Their
Uses in Clinical Research. StatMed, 1991;10:541-57.
7. Huff SM, Berthelsen CL, Pryor TA, Dudley AS. Evaluation
of an SQL model of the HELP patient database. Proc Symp
CompApplMedCare, 1992;15:386-90.
8. Hammond WE, Stead WW. The Evolution of GEMISCH
and TMR. In: Orthn HF, Blun BL editors. Implementing
Health Care Information Systems. Springer-Verlag, New York,
1989;33-66.
9. Burkett, ME. The Tertiary Center and Health Departnents
in Cooperation: The Duke University Experience. J Perinat
Neonat Nursing, 1989;2:11-19.
10. Hales, JW, Hammond, WE, Straube, MJ. Reverse
Engineering Objects into the TMR Record Structure. AAIA
1994 Spring Congress Program, 1994:82.

376

